Seasonal variation of microbial ecology in hemlock soil of Tatachia Mountain, Taiwan.

نویسندگان

  • Shang Shyng Yang
  • Shu Hsien Tsai
  • Hsiao Yun Fan
  • Chiun Kai Yang
  • Wei Lan Hung
  • Shine Tsern Cho
چکیده

BACKGROUND AND PURPOSE Forest soil microorganisms and fauna decompose the organic materials, and thus strongly influence the nutrient cycling of the ecosystem. Soil microorganisms also contribute to soil structure and soil fertility. In Taiwan, the microbial distributions of soils have only been determined in acidic soil, inorganic acidic soil, upland soil, alkaline soil and power plant areas. There are few data on the microbial populations of forest soils. Tatachia Mountain is located in the central part of Taiwan and is a typical high altitude protected ecosystem area, designated as a National Park. This study investigated the role of microorganisms in the ecology and nutrient transformation of forest soil in Taiwan. METHODS As part of long-term ecological research in Taiwan, the environmental conditions, seasons, microbial populations, biomass and organic acid contents of hemlock soil were investigated. We also studied the effect of depth on microbial populations and biomass. RESULTS The soil temperatures were between 5.5 and 15.6 degrees C and the soil pH ranged from 3.3 to 4.4. Total organic carbon and total nitrogen contents ranged from 2.3 to 37.1% and from 0.3 to 1.7%, respectively. The carbon/nitrogen ratio was between 8.2 and 24.4. In topsoil, each gram of soil contained 10(5)-10(7) colony-forming units (CFU) culturable bacteria, 10(2)-10(5) CFU actinomycetes, 10(3)-10(5) CFU fungi, 10(4)-10(6) CFU cellulolytic microbes, 10(4)-10(6) CFU phosphate-solubilizing microbes, and 10(3)-10(6) CFU nitrogen-fixing microbes. Microbial populations were higher in topsoil compared with subsoil, but lower in topsoil than in organic layer. Microbial populations also decreased with the depth of soil. Microbial populations at 1E horizon were 0.6% to 9.4% of those at O horizon. The microbial biomass evaluated contained carbon 391-1013 mug, nitrogen 51-146 mug, malic acid 76-557 nM and succinic acid 37-527 nM per gram of soil. Summer season had higher microbial populations, biomass and organic content than winter season, but the differences were not significant. CONCLUSION Heavy coverage of organic matter was found in hemlock and spruce soils and was associated with acidic pH. Microbial populations decreased with increasing soil depth. Microbes play a very important role in organic matter decomposition and nutrition transformation in hemlock soil.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of vegetation type on microbial biomass carbon and nitrogen in subalpine mountain forest soils.

BACKGROUND/PURPOSE Microbial biomass plays an important role in nutrient transformation and conservation of forest and grassland ecosystems. The objective of this study was to determine the microbial biomass among three vegetation types in subalpine mountain forest soils of Taiwan. METHODS Tatachia is a typical high-altitude subalpine temperate forest ecosystem in Taiwan with an elevation of ...

متن کامل

Quantitative Characterization of Field-estimated Soil Nutrient Regimes in the Subalpine Coastal Forest

Site classification in the biogeoclimatic ecosystem classification system is based on three differentiating properties: climatic regimes (expressed by biogeoclimatic subzones or variants), soil moisture regimes (SMRs), and soil nutrient regimes (SNRs). A SNR represents a segment of a regional soil nutrient gradient, i.e., soils which provide similar levels of plant-available nutrients over a lo...

متن کامل

Effects of season and experimental warming on the bacterial community in a temperate mountain forest soil assessed by 16S rRNA gene pyrosequencing

Climate warming may induce shifts in soil microbial communities possibly altering the long-term carbon mineralization potential of soils. We assessed the response of the bacterial community in a forest soil to experimental soil warming (+4 °C) in the context of seasonal fluctuations. Three experimental plots were sampled in the fourth year of warming in summer and winter and compared to control...

متن کامل

Comparison of Soil Microbial Biomass and Enzyme Activities among Three Alpine Grassland Types in Northern Tibet

Soil microbial biomass and enzyme activities have an important influence on nutrient cycling. The temporal variation in soil microbial biomass C, N, and enzyme activities during the growing season were determined under three different alpine grasslands in Northern Tibet. The results showed that soil microbial biomass C, and N contents and enzyme activities of the alpine meadow (AM) and the alpi...

متن کامل

Landscape genomic insights into the historic migration of mountain hemlock in response to Holocene climate change.

PREMISE OF THE STUDY Untangling alternative historic dispersal pathways in long-lived tree species is critical to better understand how temperate tree species may respond to climatic change. However, disentangling these alternative pathways is often difficult. Emerging genomic technologies and landscape genetics techniques improve our ability to assess these pathways in natural systems. We addr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of microbiology, immunology, and infection = Wei mian yu gan ran za zhi

دوره 39 3  شماره 

صفحات  -

تاریخ انتشار 2006